
First-Class Continuations: What and Why

Arjun Guha

University of Massachusetts Amherst

Plan

Today’s topic: An introduction to first-class continuations

Tomorrow’s topic: How to implement first-class continuations by source-to-source translation

Today’s meta-topic: The expressiveness of programming language features

Tomorrow’s meta-topic: How to conduct research on a full-fledged programming language,
without losing your sanity

We will use basic JavaScript for all code samples. Even if you don’t know the language, it should
be straightforward to follow. Please ask questions if you have trouble with the syntax.

Please interrupt and ask questions!

We are going to see a few code examples that are very challenging to understand.

Ask questions of the form, “What if we change the example to do X instead?” We will change
the example and run it to see how it behaves.

Control Operators

Definition

A control operator is a programming language construct that changes the normal flow of
execution in a program.

First-class continuations are a kind of control operator.

Some other control operators that are more familiar:

Conditionals: if and switch

Loops: for and while

Structured jumps: break and continue

Exceptions: try catch and try finally

Recent versions of JavaScript support some additional control operators:

Asynchronous functions: async function and await

Generator functions: function*, yield, and yield*

None of this is JavaScript specific: you can find all the control operators above in several other
programming languages.

Why New Control Operators?

The right control operator can make programs much easier to read and write. We will show
how, using JavaScript’s asynchronous functions and generator functions.

First-class continuations make it possible to build several control operators as a library (i.e.,
without building them into the language).

Synchronous I/O

Definition

A synchronous or blocking I/O operation blocks execution while performing I/O and then
resumes execution with the result of the I/O operation.

For example, a function with the following type would synchronously download an image:

1 loadImage(url: string) => Image

We could then display the image:

1 // drawImage(image: Image) => void
2 function drawImage(image) {
3 document.body.appendChild(image);
4 }
5

6 let image = loadImage("example.jpg");
7 drawImage(image);

In JavaScript, (almost) all I/O is asynchronous. It is impossible to write a synchronous
loadImage function in JavaScript.

Asynchronous I/O

Definition

Asynchronous or nonblocking I/O performs the operation in the background and applies callback
function when the I/O result is available.

We can implement an asynchronous function to load images:

1 loadImage(url: string, callback: Image => void) => void

So, to load two images in sequence (link):

1 function callback2(image2) {
2 drawImage(image);
3 }
4

5 function callback1(image1) {
6 drawImage(image);
7 loadImage("example2.jpg", callback2);
8 }
9

10 loadImage("example1.jpg", callback1);

We need a new callback function to wait for the result of each new asynchronous operation.

http://plasma-umass.org/pliss2019/examples/callbacks.html

Async Functions

Definition

An async function can start an asynchronous task, suspend its own execution, and then resume
with the result of the task when the task completes.

(link)

1 function loadImage(url) {
2 // implementation omitted. Turns callbacks into Promises.
3 }
4

5 async function F() {
6 let image1 = await loadImage("example1.jpg");
7 drawImage(image1);
8 let image2 = await loadImage("example2.jpg");
9 drawImage(image2);

10 }

Within an async function, we use the await keyword to call another async function.

We can read the program from top to bottom (contrast to the callback-based approach).

http://plasma-umass.org/pliss2019/examples/async.html

Generator Functions

Definition

A generator function is a special kind of function that suspends its execution when it produces a
value for the caller. The caller may then resume the generator function to make it produce the
nex value (if any).

Ordinary functions do not work this way: they run to completion and cannot be suspended.

1 function* makeThreeGen() {
2 yield 1;
3 yield 2;
4 yield 3;
5 }

1 let gen = makeThreeGen();
2 console.log(gen.next().value); // displays 1
3 console.log(gen.next().value); // displays 2

Unbounded Generators

The following example helps illustrate that the yield statement truly suspends execution of the
generator function:

1 function* genNats() {
2 let i = 0;
3 while (true) {
4 yield i;
5 i = i + 1;
6 }
7 }
8

9 let gen = genNats();
10

11 // Displays 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
12 for (let i = 0; i < 10; i++) {
13 console.log(gen.next().value);
14 }

If yield did not suspend the generator function, the loop in the generator would run forever.

Some More Control Operators

There are several other kinds of control operators that JavaScript does not have:

Sampling executions from probability distributions: WebPPL implements a compiler from a
small subset of JavaScript with extensions to support probabilistic programming.

Backtracking search: Tau Prolog implements a Prolog interpreter in JavaScript.

(Green) Threads: Concurrent JavaScript

Question

Should JavaScript implement these natively too?

Using first-class continuations, we can implement each control operator above as a small library.
In essence, first-class continuations subsume a wide variety of other control operators and
language features.

http://webppl.org
http://tau-prolog.org
https://webkit.org/blog/7846/concurrent-javascript-it-can-work/

Semantics, Informally

We need to understand three concepts before we get to first-class continuations:

1 Environments

2 Active Expressions

3 Continuations

This will be an quick, informal introduction via examples. For a rigorous, formal approach, see
Semantics Engineering with PLT Redex.

https://mitpress.mit.edu/books/semantics-engineering-plt-redex

Environments

Definition

The environment of a program maps variable names to values.

1 let x = 100;
2 let y = 200;
3 console.log(x + y);

At the last line, the environment holds
the values of x and y.

1 function F(x) {
2 console.log(x);
3 }
4

5 F(100);
6 F(200);

Each application evaluates the body of
F in a different environment.

Active Expressions

Definition

The active expression in a program is the smallest part of the program that the language will
evaluate next.

Examples:

1 console.log(2 + 3 * 4);

1 console.log(2 + 12);

1 console.log(14);

Two things to note:

A statement or the whole program
can be the active expression.

Values cannot be active
expressions.

1 if (5 > 10) {
2 console.log("oops");
3 }
4 else {
5 console.log("hi");
6 }

1 if (false) {
2 console.log("oops");
3 }
4 else {
5 console.log("hi");
6 }

1 console.log("hi");

Continuations

Definition

The continuation of an active expression is the rest of the program (i.e., excluding the active
expression).

Therefore, the continuation is an expression with a single “hole”, where the active expression used
to be. We will write that hole as �.

For example:

Program Active Expression Continuation
console.log(2 + 3 * 4) 3 * 4 console.log(2 + �)
console.log(2 + 12) 2 + 12 console.log(�)
console.log(14) console.log(14) �

Note

All programming languages have continuations. They are fundamental for evaluation.

To run a program, we:

1 Identify the active expression and the continuation,

2 Evaluate the active expression,

3 Plug the result of evaluation into the hole that the active expression,

4 Repeat, until the program does not have an active expression.

Another Example of Continuations

Step 1
Program if (10 > 5) { log("o" + "k"); } else { log("oops"); }

Active Expression 10 > 5
Continuation if (�) { log("o" + "k"); } else { log("oops"); }

Step 2
Program if (true) { log("o" + "k"); } else { log("oops"); }

Active Expression if (true) { log("o" + "k"); } else { log("oops"); }
Continuation �

Step 3
Program log("o" + "k");

Active Expression "o" + "k"
Continuation log(�);

Step 4
Program log("ok");

Active Expression log("ok");
Continuation �

First-Class Continuations

Definition

In programming languages that support first-class continuations, it is possible to turn a
continuation into a value.

A continuation value stored in a variable:

1 let k = (� + 100);

An array of continuation values:

1 let arr = [� + 100, � + 200];

A continuation passed as an argument to a function:

1 f(� + 100);

Note

The � notation is pseudocode. It is not possible to directly write a continuation in a program,
but it helps understand what is happening under the hood. We will resolve this in a moment.

Applying a Continuation Value

A continuation value can be applied to an argument. (Applying a continuation value looks like
applying a unary function.) When a continuation k is applied to a value v:

1 We discard the current continuation, and

2 The continuation k is restored and the hole gets filled with v.

Step 1

Program let k = (� + 1); log(100 + k(10))
Environment

Active Expression let k = (� + 1)
Continuation �; log(100 + k(10))

Step 2

Program log(100 + k(10));
Environment k = (� + 1)

Active Expression k(10)
Continuation log(100 + �);

Step 3

Program 10 + 1; This is k with 10 plugged in.
Environment k = (� + 1)

Active Expression 10 + 1
Continuation � Continuation from Step 2 has been discarded

Step 4
Result 11;

Environment k = (� + 1)

Note on call/cc

Note

If you have see continuations before, you may know about call/cc. We are going to introduce
an operator that is similar, but not identical to call/cc.

Capturing Continuations

Languages with first-class continuations provide a primitive operator that can turn its own
continuation into a value (“capturing the current continuation”).

We are going to introduce a new unary operator called control, which takes a unary function as
an argument. When applied to a function f, control(f):

1 Turns its own continuation into a continuation value k, and

2 Applies the function to the continuation value f(k) in the empty continuation.

The following example is fairly simple, since F does not use k (link):

Step 1

Program function F(k) { log(200); }; log(100 + control(F));
Environment
Active Expression function F(k) { log(200); }
Continuation �; log(100 + control(F));

Step 2

Program log(100 + control(F));
Environment function F(k) { log(200); };
Active Expression control(F)
Continuation log(100 + �);

Step 3

Program log(200);
Environment let k = log(100 + �); function F(k) { log(200); };
Active Expression log(200);
Continuation �

http://plasma-umass.org/pliss2019/playground/index.html#../examples/example1.js

Applying a Captured Continuation (Example 1)

In the following example, the throw statement is never reached (link):

1 function F(k) {
2 k(200);
3 throw "bad";
4 }
5 log(100 + control(F));

Step 1

Program function F(k) { k(200); throw "bad"; }; log(100 + control(F));
Environment

Active Expression function F(k) { k(200); throw "bad"; };
Continuation �; log(100 + control(F));

Step 2

Program log(100 + control(F));
Environment function F(k) { k(200); throw "bad"; };

Active Expression control(F)
Continuation log(100 + �);

Step 3

Program k(200); throw "bad"
Environment let k = log(100 + �);

Active Expression k(200)
Continuation �; throw "bad";

Step 4

Program log(100 + 200);
Environment

Active Expression 100 + 200
Continuation log(�);

· · ·

http://plasma-umass.org/pliss2019/playground/index.html#../examples/example2.js

Applying Captured Continuations (Example 2)

Trace the execution of this program:

1 let i = 0;
2 let saved = "nothing";
3 function handler(k) {
4 saved = k;
5 saved("Start");
6 }
7

8 log(control(handler));
9 if (i < 3) {

10 i = i + 1;
11 saved(i);
12 }

Building New Control Operators with First-Class Continuations

Code that uses first-class continuations directly is usually very hard to read.

But, we can use first-class continuations to build other control operators that are more
straightforward.

A Countdown Program

Programming Challenge

Write a program that counts down seconds, displaying: “Three”, “Two”, “One”, “Liftoff!”.

Solution (link):

1 function callback3() {
2 console.log("Liftoff!");
3 }
4

5 function callback2() {
6 console.log("One");
7 setTimeout(callback3, 1000);
8 }
9

10 function callback1() {
11 console.log("Two");
12 setTimeout(callback2, 1000);
13 }
14

15 console.log("Three");
16 setTimeout(callback1, 1000);

WTF

We cannot write a blocking sleep function in JavaScript (without busy-waiting).

http://plasma-umass.org/pliss2019/playground/index.html#../examples/liftoff_callbacks.js

Application: The Sleep Operator

Using first-class continuations, we can simulate a synchronous sleep function:

1 function sleep(n) {
2 function sleeper(k) {
3 setTimeout(k, n);
4 }
5 control(sleeper);
6 }

The countdown program, refactored:

1 console.log("Three");
2 sleep(1000);
3 console.log("Two");
4 sleep(1000);
5 console.log("One");
6 sleep(1000);
7 console.log("Liftoff!");

We can take any asynchronous function and simulate synchronous execution following this recipe.
This is effectively what async function and await do.

Application: Cooperative Threads

Definition

Cooperative threads run several logical threads on a single physical thread, thus there is no
parallelism and only one thread is running at a time (other threads are suspended in background).
Moreover, the running thread has to explicitly yield control of the physical thread for another
thread to start running.

Key ideas in the implementation:
1 A global array of continuation values, where each continuation value is a suspended thread.
2 To yield, we capture the continuation of the active thread, add it to the array, and apply one

of the other continuations.

1 let threads = [];
2

3 function createThread(f) {
4 function threadFunc() {
5 f();
6 start();
7 }
8 threads.push(threadFunc);
9 yieldThread();

10 }

1 function start() {
2 if (threads.length > 0) {
3 let nextThread = threads.shift();
4 nextThread();
5 }
6 }
7

8 function yieldThread() {
9 function switcher(k) {

10 threads.push(k);
11 let kOther = threads.shift();
12 kOther("resumed");
13 };
14

15 control(switcher);
16 }

Using Cooperative Threads

(link)

1 function threadA() {
2 for (let i = 0; i < 10; i++) {
3 yieldThread();
4 console.log(i);
5 }
6 })
7

8 function threadB() {
9 for (let i = 100; i < 110; i++) {

10 yieldThread();
11 console.log(i);
12 };
13 })
14

15 createThread(threadA);
16 createThread(threadB);
17 start(); // needed to activate other threads

http://plasma-umass.org/pliss2019/playground/index.html#../examples/cooperative_threads.js

Conclusion

I apologize if your head hurts

Control operators can make certain kinds of programs much easier to write (e.g., generator
functions and async functions)

First-class continuations are a powerful primitive for building new control operators

All examples online (including some that I have not covered)

Tomorrow: How to implement continuations by source-to-source translation

