
Implementing First-Class Continuations by Source to Source Translation

Arjun Guha

University of Massachusetts Amherst

Continuations Recap

Definition

The active expression in a program is the smallest part of the program that the language will
evaluate next.

Definition

The continuation of an active expression is the rest of the program (i.e., excluding the active
expression).

Therefore, the continuation is an expression with a single “hole”, where the active expression used
to be. We will write that hole as �.

Program: console.log(2 + 3 * 4); console.log("hi")

Active expression: 3 * 4

Continuation console.log(2 + �); console.log("hi")

Note

All programming languages have continuations. They are fundamental for evaluation.

Capturing Continuations Recap

Languages with first-class continuations provide a primitive operator that can turn its own
continuation into a value (“capturing the current continuation”).

control is a unary operator, which takes a unary function as an argument. When applied to a
function f, control(f):

1 Turns its own continuation into a continuation value k, and

2 Applies the function to the continuation value f(k) in the empty continuation.

Using first-class continuations, we can simulate a synchronous sleep function:

1 function sleep(n) {
2 function sleeper(k) {
3 setTimeout(k, n);
4 }
5 control(sleeper);
6 }
7

8 console.log("Three");
9 sleep(1000);

10 console.log("Two");
11 sleep(1000);
12 console.log("One");
13 sleep(1000);
14 console.log("Liftoff!");

Introduction

Today’s topic: How to implement first-class continuations by source-to-source translation.

This material is based on the following paper:

Samuel Baxter, Rachit Nigam, Joe Gibbs Politz, Shriram Krishnamurthi, and Arjun Guha.
Putting in All the Stops: Execution Control for JavaScript. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2018

Today’s meta-topic: How to conduct research on a full-fledged programming language, without
losing your sanity.

https://arxiv.org/abs/1802.02974

Several Languages Compile to JavaScript

1 JavaScript is nearly universal

2 Web-based demos are convenient

3 Compiling to JavaScript is easy

A few compilers for languages with interesting
control operators:

blocking I/O

generators

concurrency

These compilers (and a few others) effectively
implement first-class continuations in
JavaScript.

Many other compilers drop support for control
operators that JavaScript does not directly
support.

There are several ways to implement first-class
continuations. Which approach will work best
for your programming language?

A very hard question to answer:

1 Cross-language performance evaluation is
difficult: many other factors could affect
performance

2 Changing the implementation of
continuations is difficult: tends to affect
many parts of the compiler and runtime
system

3 The answer may be browser-dependent

4 The answer may be program-dependent
(e.g., is continuation capture rare, or the
norm?)

Stopify Overview

Samuel Baxter, Rachit Nigam, Joe Gibbs Politz, Shriram Krishnamurthi, and Arjun Guha.
Putting in All the Stops: Execution Control for JavaScript. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2018

1 Stopify adds first-class continuations to JavaScript. In contrast, prior work supports
first-class continuations in other languages that compile to JavaScript.1

2 Stopify implements some nice features atop continuations:

1 Stopping and resuming the running program
2 Running long computations without locking up the browser
3 Breakpoints and single-stepping (at higher cost)
4 Simulated synchronous I/O and support for web browser events
5 Polyfills for native, higher-order functions that support continuation capture

This is a common kind of pitch:

Stopify implements first-class continuations for JavaScript once and for all.

Language-specific solutions are often faster in practice.

Results suggest that Stopify is competitive or faster than language-specific approaches.

Stopify uses a few tricks (cheats?) to achieve this result. We will see how later.

1There are a few earlier implementations, but they are significantly less complete than Stopify. See paper for details.

https://arxiv.org/abs/1802.02974

Stopify in the Classroom

Used by 200-300 students each semester in a sophomore software engineering class

Goal is not to teach web programming

Uses Stopify for synchronous I/O, long computations, stop button, etc.

Stopify Implementation: High-level idea

The Stopify compiler instruments each function to run in three modes:

Normal mode: function runs normally
Capture mode: function saves its own stack frame and returns to its caller, which does the same
Restore mode: function restores its local variables and jumps to the last statement it was executing

The Stopify runtime system manages the transitions between each mode

The control operator sets the mode to capture

Applying a continuation value clears the stack and sets the mode to restore

Example

1 var saved = "nothing yet";
2

3 function save(k) {
4 saved = k;
5 }
6

7 function G(y) {
8 console.log("Enter G");
9 var z = control(save);

10 return y + z;
11 }
12

13 function F(x) {
14 console.log("Enter F");
15 var s = G(x + 10);
16 console.log(s);
17 }
18

19 F(0);

How should we represent the continuation value
captured at line 9?

The continuation value must reconstruct the
calls to F and G, without re-printing the output.

Continuation Representation

1 let saved = "nothing yet";
2

3 function save(k) {
4 saved = k;
5 }
6

7 function G(y) {
8 L1: console.log("Enter G");
9 L2: var z = control(save);

10 L3: return y + z;
11 }
12

13 function F(x) {
14 L4: console.log("Enter F");
15 L5: var s = G(x + 10);
16 L6: console.log(s);
17 }
18

19 F(0);

1 let saved = [
2 { f: F, l: L5, vars: { x: 0 } },
3 { f: G, l: L2, vars: { y: 10 } }
4];

In capture mode, each function pushes its own
frame into the array

In restore mode, each function stores its own
stack frame and then applies the next function in
kValue

Restoring Continuations

Let’s pretend we have the goto control operator in JavaScript:

1 function G(y) {
2 if (mode === ’restore’) {
3 y = cont[0].vars.y;
4 var l = cont[0].l;
5 cont.shift();
6 goto l;
7 }
8 L1: console.log("Enter G");
9 L2: let z = control(save);

10 L3: return y + z;
11 }
12

13 function F(x) {
14 if (mode === ’restore’) {
15 x = cont[0].vars.x;
16 var l = cont[0].l;
17 cont.shift();
18 goto l;
19 }
20 L4: console.log("Enter F");
21 L5: let s = G(x + 10);
22 L6: console.log(s);
23 }
24

25 F(0);

1 let saved = [
2 { f: F, l: L5, vars: { x: 0 } },
3 { f: G, l: L2, vars: { y: 10 } }
4];

isRestoring and cont are variables set by the
Stopify runtime system

The control operator is implemented as a
function

1 function control(receiver) {
2 if (mode === ’restore’) {
3 mode = ’normal’;
4 return /* continuation arg */;
5 }
6 else if (mode === ’normal’) {
7 // Start capturing
8 }
9 else {

10 // impossible case
11 }
12 }

Capturing Continuations

To capture a continuation, the program has to save its stack
The control operator throws an exception that contains an array
Each function will catch the exception and and itself to the array

1 function G(y) {
2 if (mode === ’restore’) {
3 ...
4 }
5 L1: console.log("Enter G");
6 try {
7 L2: var z = control(save);
8 }
9 catch (exn) {

10 exn.stack.push({
11 f: G, l: L2,
12 vars: { y: y }
13 });
14 throw exn;
15 }
16 L3: return y + z;
17 }
18

19 function F(x) {
20 if (mode === ’restore’) {
21 ...
22 }
23 L4: console.log("Enter F");
24 try {
25 L5: var s = G(x + 10);
26 }
27 catch (exn) {
28 exn.stack.push({
29 f: F, l: L5,
30 vars: { x: x }});
31 throw exn;
32 }
33 L6: console.log(s);
34 }
35

36 F(0);

1 let saved = [
2 { f: F, l: L5, vars: { x: 0 } },
3 { f: G, l: L2, vars: { y: 10 } }
4];

1 function control(receiver) {
2 if (mode === ’restore’) {
3 ...
4 }
5 else if (mode === ’normal’) {
6 throw {
7 stack: [],
8 receiver: receiver
9 };

10 }
11 else {
12 // impossible case
13 }
14 }

Capture/Restore with Arbitrary Expressions

1 function P(f, g, x) {
2 return f(g(x));
3 }

Same approach:

1

2 function P(f, g, x) {
3 if (mode === ’restore’) {
4 ...
5 }
6 try {
7 L1: return(f(g(x)));
8 }
9 catch (exn) {

10 exn.stack.push(...);
11 throw exn;
12 }
13 }

Two serious issues:

During capture: we cannot
(easily) determine if the exception
was thrown by f or g.

During restore: goto L1 always
applies g first, and there is no way
to skip it and apply f

(Automatically) rewrite P to the following equivalent
function:

1 function P(f,g,x) {
2 let t = g(x);
3 return f(t);
4 }

A Normal Form

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and
Matthias Felleisen. The Essence of Compiling with
Continuations. PLDI 1993.

My other experiences with ANF:

Type system design

Program verification

Program analysis

After A Normalization

P after A Normalization:

1 function P(f,g,x) {
2 let t = g(x);
3 return f(t);
4 }

Correctly instrumented version of P:

1 function P(f, g, x) {
2 if (mode === ’restore’) {
3 f = cont[0].vars.f;
4 g = cont[0].vars.g;
5 x = cont[0].vars.x;
6 let l = cont[0].l;
7 goto l;
8 }
9 L1: let t;

10 try {
11 L2: t = g(x);
12 }
13 catch (exn) {
14 exn.stack.push({ f: P, l: L2,
15 vars: { f: f, g: g, x: x } });
16 throw exn;
17 }
18 L3: return f(t);
19 }

Note that P does not capture/restore the
application f(t)

Therefore, when capture starts within f,
the next frame saved in cont will be
frame of the caller of P

During restore, the caller of P will restore
the f-frame (skipping the P-frame)

This is safe, because the P-frame is
“useless”: it is merely: return f(t)

This lets you fudge proper tail calls

JavaScript A Normalization Pipeline

Doing this correctly was half the work.
Multi-step process:

1 Desugar a few JavaScript features (e.g., var x, y;)

2 Add around loop/if bodies

3 Eliminate all loops except while loops

4 Eliminate continue

5 Eliminate switch

6 Eliminate short-circuiting boolean expressions (e.g., f() || g())

7 A Normalize

Approach:

1 Straightforward assumptions and guarantees between each step

2 Some steps are not fundamental, but simplify later stages

3 Guiding principle: grammar of ANF-JavaScript

4 Only one optimization: do not A-normalize expressions without applications (e.g., x + 12)

5 Reusable artifact

2More later

Implementing Continuations by Source to Source Translation

1 A Normalize JavaScript (7+ steps)

2 Box assignable variables that are captured by nested functions and may be captured in
continuations
Analogous problem in compilers:

1 function F(x) {
2 function g(y) {
3 return x + y;
4 }
5 return g;
6 }
7 let addTen = F(10);
8 addTen(5); // is x on the stack?

3 Allow goto to function applications

4 Add capture/restore code to each function

5 One optimization: avoid capturing code when it is obvious that the called function will not
capture its continuation (≈ 30% performance improvement)

JavaScript

Everything discussed so far is JavaScript-neutral, and is applicable to other languages.

Arity Mismatch Errors

The arity of a function is the number of arguments in takes.

An arity mismatch error occurs when a function receives the wrong number of arguments. In
statically typed languages (e.g., Java), arity mismatch errors occur before the program is run.
In dynamically typed languages, arity mismatch errors occur while the program is running.

JavaScript does not have arity mismatch errors.

1 function F(x) {
2 console.log(x);
3 }
4

5 F(1, 2); // prints 1. The 2 is ignored.
6 F(); // prints undefined.

This is not a problem for continuations

The “arguments” Object

All the arguments of a function are available in the arguments object.

1 function F(x) {
2 console.log(x);
3 for (let i = 0; i < arguments.length; i++) {
4 console.log(arguments[i]);
5 }
6 }
7

8 F(1,2,3,4); // prints 1 1 2 3 4

Problem

This is a problem: we may lose the extra arguments during capture.

Implicit Method Calls

Trivia

Give value for x, such that "Hello " + x is an infinite loop.
Hint: The same idea holds in Java too.

1 let x = {
2 toString() {
3 while (true) { }
4 }
5 }

Problem

1 let x = {
2 toString() {
3 control(...)
4 }
5 }

Solutions and Performance

Problem: functions with arity mismatches

Solution: save and restore the arguments object3

Performance problem: arguments object materialization

Problem: implicit method calls,

Solution: make the implicit calls explicit

1 let t1 = x.toString(); // and valueOf
2 let t2 = "Hello " + t1;

Performance problem: lots of extra instrumentation

Problem: JavaScript supports getters and setters:

1 let a = o.b; // may call the getter b

Solution: make the implicit calls explicit

Performance problem: lots of extra instrumentation

3This does not work in the general case.

Solution: Ignore Problems When Possible

A compiler that produces JavaScript emits code into a sub-language of JavaScript.

Compiler Impl Args Getters Eval (#) Benchmarks
PyJS 7 M 7 7 (16) PyPy Benchmarks, Shootout
ScalaJS + 7 7 7 (18) Shootout
scheme2js 7 V 7 7 (13) Larceny
ClojureScript + M 7 7 (8) Shootout
dart2js + 7 T T (15) Ton80, Shootout
Emscripten 7 V 7 7 (13) JetStream, Shootout
BuckleScript 7 7 7 7 (15) OPerf-Micro, Shootout
JSweet + M 7 7 (9) SciMark, Shootout
JavaScript 3 3 3 3 (19) Kraken, Shootout
Pyret 7 7 7 T (21) Pyret

A 3 or 7 indicates that a JavaScript feature is used in full or completely unused. The other
symbols indicate restricted variants of the feature.

Identifying the right sub-language can improve performance dramatically

Example: Performance of PyJS

0

10

20

30

b
bi

na
ry

_t
re

es
de

lt
ab

lu
e

fi
b

fl
oa

t
nb

od
y

py
st

on
e

ri
ch

ar
ds

sc
im

ar
k−

ff
t

sp
ec

tr
al

_n
or

m

Benchmark

S
lo

w
d

o
w

n

Implicit method calls
No implicit method calls

0.0

2.5

5.0

7.5

10.0

b
bi

na
ry

_t
re

es

de
lt
ab

lu
e

fi
b

fl
oa

t

nb
od

y

py
st

on
e

ri
ch

ar
ds

sc
im

ar
k−

ff
t

sp
ec

tr
al

_n
or

m

Benchmark

S
lo

w
d

o
w

n

Chrome − desugar
Chrome − dynamic
Edge − desugar
Edge − dynamic

Performance relative to unmodified PyJS on a suite of 10 Python benchmarks run 10 times each.
Each graph shows how an option setting affects running time or latency. Error bars show the 95%
confidence interval.
Speedups are a fluke, due to PyJS generating really bad code.

Performance Evaluation

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 50 100 150

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (11.6)
ChromeBook (10.8)
Edge (30.5)
Firefox (11.0)
Safari (8.4)

C++ (Emscripten)

●

●

●
●

● ●

● ●

● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (9.1)
ChromeBook (10.7)
Edge (13.2)
Firefox (18.5)
Safari (5.5)

Clojure (ClojureScript)

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (3.0)
ChromeBook (5.0)
Edge (7.0)
Firefox (3.4)
Safari (1.7)

Dart (dart2js)

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 20 40 60

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (8.1)
ChromeBook (6.0)
Edge (20.9)
Firefox (9.2)
Safari (6.3)

Java (JSweet)

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 200 400

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (20.0)
ChromeBook (14.6)
Edge (37.2)
Firefox (24.8)
Safari (13.7)

JavaScript

●
●

●

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 20 40

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (5.4)
ChromeBook (5.7)
Edge (7.2)
Firefox (8.9)
Safari (4.2)

OCaml (BuckleScript)

●

●

●

●

● ● ● ● ● ● ● ●
● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 5 10 15

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (1.7)
ChromeBook (1.4)
Edge (3.8)
Firefox (3.4)
Safari (2.0)

Python (PyJS)

●

●
●

●

●
● ●

●
● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 40 80 120

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (14.6)
ChromeBook (20.2)
Edge (17.2)
Firefox (23.9)
Safari (11.8)

Scala (ScalaJS)

● ● ●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (8.8)
ChromeBook (9.0)
Edge (18.2)
Firefox (13.5)
Safari (6.5)

Scheme (scheme2js)

CDFs of Stopify’s slowdown on nine languages. The median slowdown is in the legend.

PyJS + Stopify vs. Skulpt

Skulpt: implementation of Python in JavaScript that does execution control

PyJS: implementation of Python in JavaScript without execution control

Issues: (1) Skuplt can only run 8 of 16 benchmarks, (2) PyJS and Skulpt pass/fail different
portions of the CPython test suite, (3) probably other threats to validity

Benchmark µ 95% CI
anagram 0.25 ± 0.01
binary-trees 0.27 ± 0.01
fib 0.25 ± 0.00
gcbench 0.08 ± 0.01
nbody 0.25 ± 0.00
pystone 0.37 ± 0.01
schulze 1.25 ± 0.08
spectral-norm 0.36 ± 0.01

Slowdown relative to Skulpt. (Stopify is faster when µ < 1.)

Stopify + Pyret

Joe Politz, one of Pyret’s lead developers, co-authored this work

Pyret: mostly-functional programming language that compiles to JS, self-hosting compiler,
does proper tail calls, blocking I/O, REPL, animations, graceful termination, etc.

Five years of engineering, thousands of users, still has some issues

Our approach: modify the last phase of the Pyret compiler and portions of the runtime
system to invoke Stopify, instead of doing capture/restore itself (lots of code deleted)4

From Pyret’s runtime system (several bug fixes over the years):

1 function eachLoop(fun, start, stop) {
2 var i = start;
3 function restart(_) {
4 var res = thisRuntime.nothing;
5 if (--thisRuntime.GAS <= 0) { res = thisRuntime.makeCont(); }
6 while(!thisRuntime.isContinuation(res)) {
7 if (--thisRuntime.RUNGAS <= 0) { res = thisRuntime.makeCont(); }
8 else {
9 if(i >= stop) {

10 ++thisRuntime.GAS;
11 return thisRuntime.nothing;
12 } else {
13 res = fun.app(i);
14 i = i + 1;
15 } } }
16 res.stack[thisRuntime.EXN_STACKHEIGHT++] =
17 thisRuntime.makeActivationRecord("eachLoop", restart, true, [], []);
18 return res;
19 }
20 return restart();
21 }

4This is the right way to use Stopify.

Stopify + Pyret

After Stopify (which generates equivalent instrumentation):

1 function eachLoop(fun, start, stop) {
2 for (var i = start; i < stop; i++) { fun.app(i); }
3 return thisRuntime.nothing;
4 }

●

●

● ●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 20 40

Slowdown

%
 o

f
tr

ia
ls

●
Chrome (1.1)
ChromeBook (1.1)
Edge (3.7)
Firefox (2.0)
Safari (1.1)

Conclusions

Use existing infrastructure when possible (in this case, Babel)

When working on a full-scale language, identify a small fragment in which the essence of the
problem and solution can be formulated

The translation may be problem-dependent (e.g., type-checking vs translation)

ANF is likely to help you

Take testing and CI seriously

